Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioimpacts ; 14(1): 27652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327632

RESUMO

Introduction: Patient-derived induced pluripotent stem cells (iPSCs) have been widely used as disease models to test new therapeutic strategies. Moreover, the regenerative potential of stem cells can be improved with the use of biologically active compounds. Our study was designed to explore the effect of honokiol, a small polyphenol molecule extracted from Magnolia officinalis, on the survival and culture time of iPSC-derived neurons from a sporadic Alzheimer's disease (AD) patient. This study aimed to generate iPSCs from peripheral blood mononuclear cells (PBMCs) of an AD patient using episomal plasmids with a nucleofector system and differentiate them into neurons. These iPSC-derived neurons were used to investigate the effect of honokiol extracted from M. officinalis on their survival and long-term cultures. Methods: IPSCs were generated from PBMCs of an AD patient by introducing Oct-3/4, Sox2, Klf4, L-Myc, and Lin28 using NucleofectorTM Technology. Differentiation of neurons derived from iPSCs was carried out using inducers and recognized by biomarkers. The viability of iPSC-derived neurons with the addition of honokiol extracted from the bark of M. officinalis was determined by the MTT analytical kit. Results: IPSCs were generated by reprogramming AD patient-derived PBMCs and subsequently converted into neurons. The survival and growth of iPSC-derived neurons were significantly enhanced by adding honokiol in the experiment conditions. Conclusion: AD iPSC-derived neurons had a high viability rate when cultured in the presence of honokiol. These results have shown that AD iPSC-derived neurons can be an excellent model for screening neurotrophic agents and improving the conditions for long-term cultures of human iPSC-derived neurons. Honokiol proves to be a potential candidate for cellular therapeutics against neurodegenerative disorders.

2.
Materials (Basel) ; 12(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450832

RESUMO

Nanosilica particles are extracted from waste water containing a hexafluorosilicic acid discharged from Vietnamese fertilizer plants as an effective way not only to reduce waste water pollution but also to enhance the value of their waste water. Amorphous nanosilica particles are produced with diameters ranging from 40 to 60 nm and then adopted as a reinforcing additive for natural rubber (NR) composites. Morphological, mechanical, rheological, and thermal behaviors of the nanosilica-added NR composites are examined. Especially, mechanical behaviors of nanosilica-filled NR composites reach the optimum with 3 phr of nanosilica, at which its tensile strength, hardness, and decomposition temperature are improved by 20.6%, 7.1%, and 2.5%, respectively, compared with the pristine vulcanized NR. The improved mechanical properties can be explained by the tensile fractured surface morphology, which shows that the silica-filled NR is rougher than the pristine natural rubber sample.

3.
Materials (Basel) ; 12(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052179

RESUMO

Micron-size white bamboo fibrils were fabricated from white bamboo and used as a source for the production of highly porous and very lightweight cellulose aerogels for use as a potential oil absorbent. The aerogels were fabricated through gelation from an aqueous alkali hydroxide/urea solution, followed by a conventional freeze-drying process. The morphology and physical properties of the aerogels were characterized by field emission scanning electron microscopy and Brunauer-Emmett-Teller surface area analysis, respectively. Successful silanization of the cellulose aerogel was confirmed by energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and water contact angle measurements. The fabricated silane cellulose aerogel exhibited excellent absorption performance for various oil and organic solvents with typical weight gains ranging from 400% to 1200% of their own dry weight, making them promising versatile absorbents for a range of applications, including water purification.

4.
Bioresour Technol ; 280: 269-276, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30776653

RESUMO

The main aim of this work was to test various organic wastes, i.e. from a livestock farm, a cattle slaughterhouse and agricultural waste streams, for its ability to produce methane under thermophilic anaerobic digestion (AD) conditions. The stability of the digestion, potential biomethane production and biomethane production rate for each waste were assessed. The highest methane yield (110.83 mL CH4/g VSadded day) was found in the AD of crushed animal carcasses on day 4. The experimental results were analyzed using four kinetic models and it was observed that the Cone model described the biomethane yield as well as the methane production rate of each substrate. The results from this study showed the good potential of model organic wastes to produce biomethane.


Assuntos
Matadouros , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Cinética , Metano/biossíntese
5.
J Environ Manage ; 236: 351-357, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30739040

RESUMO

The aim of this research was to evaluate a constructed wetland system (CW) operated under aerobic-anoxic-aerobic conditions to remove C, N and P from water with high concentrations of the last two nutrients. A series of three CW were operated continuously for 190 days. An aerobic vertical CW was used in the first and third stages and an anoxic horizontal CW was used in the second stage. The total nitrogen (TN) removal efficiency was 70 ±â€¯1.5%. Similar removal efficiency behavior was observed in others nitrogen compounds, where a removal of 85 ±â€¯1.5% for NO3--N and 97 ±â€¯2.2% for NH3+N were achieved. The combination of different oxygen conditions enhanced oxidation of nitrates and the assimilation of ammonium by vegetation. On the other hand, 54 ±â€¯6.5% total phosphorus (TP) was removed in the entire system, which is higher than the reported in several investigations, including mechanized and controlled systems such as activated sludge. The phosphorous removal efficiency was attributed to the adequate design and configuration of CW, which facilitated dissolved oxygen (DO) conditions required for phosphorus capture. Despite in this investigation the CW was not designed for an optimal removal of organic matter the removal efficiency of this parameter was 64 ±â€¯7.5%. The successful results suggest that the combination of aerobic-anoxic-aerobic stages is a technically suitable option for the treatment of agricultural wastewater with high content of N and P.


Assuntos
Águas Residuárias , Áreas Alagadas , Nitrogênio , Oxigênio , Fósforo , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...